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A b s t r a c t  A semiparametric approach to match probabil- 
ity calculations using single locus probes has been devel- 
oped and compared graphically with other standard meth- 
ods by a one-sample simulation. The density functions 
obtained using this method are closer to the real distribu- 
tions than those obtained by conventional approaches. 
Our method does not need to establish an arbitrary match 
threshold, which has been a source of problems in practi- 
cal applications of standard methods. Moreover, it can be 
adjusted to any particular conditions by setting the exper- 
imental error and correlation of each laboratory. To assess 
the practical performance of this method we carried out a 
comparison experiment using a sample of 229 individuals 
analysed in duplicate. 

K e y  w o r d s  Semiparametric approach • Single locus 
probes • Match probability 

Introduction 

DNA profiling has become a popular method in forensic 
investigation of crime and disputed paternity cases. Un- 
doubtedly, it is a very powerful technique since DNA can 
be obtained from minimal amounts of any human tissue, 
even from degraded biological specimens that are fre- 
quently found at crime scenes. Considerable effort has 
been made to standardise the laboratory techniques and 
instruments used to carry out the analyses (Kearney et al. 
1989; Schneider et al. 1991; Gill et al. 1992). However, 
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the statistical methods used to evaluate the information 
contained in DNA profiles still cause controversy among 
forensic scientists (Gill et al. 1990; Evett and Gill 1991; 
Budowle et al. 1991; Berry 1991; Berry et al. 1992; Devlin 
et al. 1992; Evett et al. 1992; Monson and Budowle 1993). 
When conventional genetic markers are used, the compari- 
son between two samples is straightforward. The alleles of 
these markers are discrete variables and a match is declared 
when two samples have identical phenotypes across all 
loci, otherwise an exclusion is considered because the 
probability that the same individual produces two different 
genotypes for the same locus is zero. When two samples 
match, the probability that they come from the same indi- 
vidual can be given on the basis of the frequency distribu- 
tion of the alleles of the different loci used in the analysis. 
With VNTR systems, the statistical inference is more diffi- 
cult. In a VNTR locus, alleles are DNA fragments of dif- 
ferent lengths which are measured indirectly using gel 
electrophoresis and compared with standard weight mark- 
ers. This results in some measurement error associated with 
the fragment size estimation which is often greater than the 
repeat unit size. Therefore, it is not possible to distinguish 
close alleles with absolute certainty. Hence there is a con- 
tinuous allele distribution in which discrete allelic frequen- 
cies cannot be assigned. When analysing VNTR polymor- 
phisms it is necessary to adopt a statistical method which 
allows the analyst to give a probability of a match between 
two bands appearing to have the same origin. A number of 
methods have been proposed to determine this probability 
(Baird et al. 1986; Gill et al. 1990; Budowle et al. 1991; 
Pascali et al. 1991), most of which are based on the sub- 
division of the continuous distribution of fragment sizes 
into arbitrary intervals. The frequency of a fragment whose 
molecular size falls into a specific interval is taken to be 
the frequency of the overall number of fragments that are 
contained in that subdivision. These discrete frequencies 
can be used in a very similar way to the conventional meth- 
ods when analysing blood group loci and serum proteins, 
thus making it easier to understand by non-expert person- 
nel involved in a trial. However, these kinds of approaches 
have led to controversy, mainly for the following reasons: 
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- the existence or not of  a match is declared in a subjec- 
tive way  because the alleles cannot be determined unam- 
biguously 

- a match is defined in a switch-like fashion that changes 
to non-match in arbitrarily established points 

- the probability values obtained are higher than those 
obtained with conventional  markers, but the probability is 
underestimated since the scoring system used is very con- 
servative 

Recently, some approaches have made use of  density 
functions to estimate match probabilities in V N T R  loci 
(Devlin et al. 1991; Berry et al. 1992; Evett et al. 1992). 
In this paper, we present a model  based on a semipara- 
metric estimation of  density functions, and a subsequent 
calculation of  the probability of  a match between two 
bands by means of  a reformulation o f  the Bayes '  theorem 
in terms of  the conditional density functions. This method 
overcomes the disadvantages discussed above. The 
method is later extended to the comparison of  two-banded 
profiles, taking account  of  the correlation observed in the 
measurement  errors of  the two bands, further complicat-  
ing the calculations. The practical performance of  this 
method has been compared  by means of  a one-sample 
simulation with some other standard approaches such as 
the histogram, sliding window or fixed bin methods. The 
theoretical model  (from which the data were simulated) 
gives a similar distribution o f  frequencies to those appear- 
ing in practice. Finally, we carried out an experiment sim- 
ilar to that described by Evett et al. (1992) using a data set 
of  229 individuals analysed in duplicate, f rom which we 
have extracted information about comparisons both be- 
tween and within persons. 

Estimation of allele frequencies 

In the construction of  databases of  V N T R  polymor-  
phisms, the major  statistical concern is the problem of  es- 
timating the probability density function of  the fragment 
lengths (X) when the observed variable is only an approx- 
imation. 

The fol lowing model  is considered: 

In Y =  i n m  (X) + e 

or in other terms: 

Y = re(X) • e* 

where e is a random error term (due to measurement  er- 
rors) independent of  X (the true fragment length) in the 
distance domain, assumed to be normal  with zero mean 
and variance (~2 and m is a real function which takes into 
account  not only the linear dependence between X and Y 
(the observed fragment length), but also more general re- 
lationships. See Valverde et al. (1993) for motivat ion o f  
the model  and estimation of  the density function of  X. 
In our practical casework the function m has been esti- 
mated and can be accepted as the identity function re(x) = x. 
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Consequently, the previous model  becomes considerably 
more  simpler: 

In Y = In X + e (1) 

Match probability 

One-band case 

We can consider a factual case where two bands corre- 
sponding to different samples (e.g., presumptive father 
and son) are so close that they can be considered to have 
the same origin. The experimentally determined size of  
each band will be denoted herein as Y1 and I/2, respec- 
tively. We assign A to the event "the two f ragments  have 
the same origin".  An a priori  probability will be assigned 
to this event, P(A),  given the basis of  previous evidence. 
If  the event A is true this means, using equation (1), that 

In Y1 -- In X + el 
In Y2 = In X + e2 

given that ~1 and ~2 are independent errors, with normal 
distribution and variances (5 2 , and are also independent 
with respect to X (the c o m m o n  true fragment length). 

I f  the event A is not true, then 

In Y1 = l n X ~  + el 
In Y2 = In X2 + e2 

where el, e2, X1 and X 2 are independent of  each other. This 
means that in Y1 and in Y2 are two independent variables 
with the same distribution. 
Denote Z 1 = In Yl and Z 2 = In I12. In practice we observe 
two values z 1 and z 2 (z 1 = In y~ and z 2 = In Y2). In this case, 
the Bayes rule can be reformulated to calculate the a pos-  
teriori probability o f  event A, having observed Y1 and Y2, 
in terms of  the conditional density functions: 

p(A I ,,y2) = P(A l* ZI =zI, Z2=z2) 

_ g(zb z2 [~)" P(A) (2) 
g(zl, z2 I~)" P(A) + g(z~, z2 I~) .  P(A) 

where 

g(z~, z 2 [ ~) = ~ g(z~, z 2 I ~. Q = qffO(q)dq, Q = In X with den- 
sity f o  and g(z 1, z 2 *A, O= q) is the conditional density o f  
(Z1, Z2) to the event A and to Q = q. 
g(q ,  zz I~) = fZ(zl)  • fZ(z2), where f z  is the density func- 
tion of  Z, 
Note that, since El, e2 and Q are independent (under A), 
then 

g(zl, z2 I ~, Q = q) = ~O(zl - q)" (O(z2 - q) 

qO being the density of  a normal distribution with zero 
mean and variance c#. 
In this manner, the two terms to be estimated in (2) are: 

g(zl, z2 I~) = Iq~(zl - q ) .  ~o(z2 - q) fQ(q)dq (3) 

g(q ,  z 2 l ]  ) = fZ(zl)  . f z  (z2) (4) 
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Expression (4) can be directly estimated by means of a 
kernel method: 

g(Z1,Z21~)=)h(Z1)'ffZ(z2) = 

. - z , )  (5) 
n i=1 ~ n  i=1 

where 

x h ( . )  = 

and K is the gaussian kernel: 

K(u)-- 1 ( u~ ~ -  e x p ~ - ~ - )  

To estimate term (3) we need to es t imatef  o (q) and o 2. To 
do this, a semiparametric method based on kernel estima- 
tion (Valverde et al. 1993) has been used: 

/7 
f O ( q ) = l ~ , K ~ ( q - Z i )  (6) 

n i=l 

6z = ln(1 + S 2) (7) 

where S 2 is the empirical variance of the values Yi/Cn(Xi) 
for a preliminary sample (Xi, Yi) where the true fragment 
length is known and rh is a nonparametric regression esti- 
mation of Y given X. This step becomes very important in 
calibrating the laboratory experimental error. 
Assume we have a database D1, D2 ..... D~ of logarithms of 
observed fragment lengths. Now, using (6) and (7): 

1 " 
g(q,Zz[a) = j Ka(zl -q)Ka(z2 - q ) -  ~ , K ~ ( q - D i ) d q  = 

f/ i=1 

1 " 
= -- Y. ~ Ka (z~ - q)Ka (z 2 - q ) K ~  (q - D i )dq = 

Ig i- 1 

n(~/2~)3(~2(h2 (~2)1/2 I exp (<-q)~26 ~ 

exp/ (z2-q)2 /exp  ( (q-Dl)2 ~,  

n 
1 (8) 

Given that: 

L(Zl'Z2'Zi)= 2 ~ l @ 2 ( A 2 - : ( ~ 2 ) 2 h  2 _ @2 

• e xp ( -h2 ( z l - z2 )2+2~2[Di ( z l+z2 ) - z l z2 -Di2]  
(9) 
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Operating with (8) and (9), we obtain: 

1 
g(zl'z2 [A) = n Z r c ( ~  (~2 

i~lexp - h 2 ( z l -  z2)2+26226a[Dg(zl( 2h2 _ 62)+ z2)-ZlZ2-D?] (10) 

In this way, the estimation of P(Aly,. y~), or the probability 
that the two fragments share the same origin, results in: 

 (z,,z2 IA;7(Z;i(Z  (11) 

which can be obtained from equations (5) and (10). 
If we consider a prior probability P(A) = 0.5, then P ( ~  = 
1 -P(A)  = 0.5, and the formula (11) can be simplified as: 

f)(AlYl"2)= g(ZI,Z21A)~g(zI,Z2 ~) (12) 

This formula is of general use an paternity cases, which 
are usually reported in terms of percentage probability. 
However, a simple transformation allows the likelihood 
ratio values to be obtained. 

Two-band case 

In a criminalistic context, we usually compare two speci- 
mens each containing two bands which are suspected to 
have the same origin. In this situation, we must take ac- 
count of the correlation between the measurement errors 
of each pair of bands. The experimentally determined size 
of each pair of bands will be denoted herein as (Y~, I(2) 
and (Y3, Y4). The correlation between measurement errors 
means that if Y1 is greater than I13, it is very possible that, 
when the samples match, Y2 will be greater than g4- As in 
the one-band case, we assign A to the event "the two frag- 
ments have the same origin." 
If the event A is true, this means, using equation (1), 
that 

In Y1 = in X1 + el in I13 = In X1 + e3 
In Y2 = in 3;2 + e2 in Y4 = In X2 + e4 

where (el, e2) and (e> e4) are independent errors, with bi- 
variate normal distribution with zero mean and covariance 
matrix given by 

where p is the correlation coefficient of the measurement 
errors, and are also independent of X1 and X2 (the com- 
mon true fragment lengths of each allele). 
If the event A is not true, then 
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In Y1 = In X1 + el in 113 = in X3 + e3 
In I12 = in X2 + e2 in I14 = in X 4 + e4 

where (el, s2), (s3, s4), X> X 2, X> and X4 are independent 
of each other and the error distribution is as specified 
above. As a consequence (Y1, Y2) and (I13, I14) are inde- 
pendent vectors with the same distribution. Denote Zi = 
In Yi, i = 1, 2, 3, 4. In practice we observe two pairs (z I, z2) 
and (z 3, z4), where zi = In Yi, i = 1, 2, 3, 4. In this case, 
Bayes '  rule applies to calculate the posterior probability 
of the event A, having observed (y~, Y2) and (y> Y4), 

P(Aly~,y2,y3,y4)=P(Alzi=~,i=l,2,s,4) 

g(z~,z2,z3,z4lA)'P(A) 
(13) 

g(Z1,Z2,Z3,Z4[ A)" P(A)q- g(z1,z2,z3,z41 ~ )" P(A ) 

where g denotes the joint four-dimensional density func- 
tion of (q,  z2, z3, z4) given A or given 27. An equivalent 
formula relies on the so-called likelihood ratio 
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b, = h2c~2(2h2 - &2 - p@2), 

b2 = _ ~ ( ~ 2 ( 2 h 2 ( h  2 _ ( ~ 2 ) + @ 4 .  (1_~2) ) ,  

b3=-(hZ-O2)62(2h2-&2+~2&2), 

cki = z k - Di, for i = 1, 2 ..... n and k = 1, 2, 3, 4. 

h is the bandwidth in the kernel method and ~ and t3 are 
suitable estimators of (~ and 9. To be more precise, h has 
been chosen to be the smoothed cross-validation band- 
width, i.e. a plausible estimator of the bandwidth that 
minimizes the distance between the whole curve of the 
true density function and its kernel estimator. This distance 
is measured in terms of the mean integrated squared error 
(MISE). See Hall et al. (1992) for details. 

Error and correlation estimation 

V(Ay, )__ CR V(al ,y2,y3,~,'4 LR.P(A)+P(-A) (14) 

where 

LR = g(zl .ze, z,, z41A ) 
g(Z1.Z2,Z3,Z4[~ ) (15) 

Given a database D i, D2 ..... D n of logarithms of observed 
lengths and using the kernel method with gaussian kernel, 
tedious calculations lead to some estimations of  the terms 
in the numerator and denominator of (15): 

Although no observed sample el, ~2 . . . . .  g~ is available 
for s and only Yl, Y2 . . . . .  Yn are observed, repeated mea- 
sures pertaining to the same true fragment length (i.e., In 
Yl = in x + el, i = 1, 2 . . . . .  n) are enough to estimate ( f  by 

n - 1  = 2 n ( n -  1) 

_ 1 2 
2n(n_ l )~ , ( lny i - lny j )  i~j 

which is observable. This is easily extended to the case 
where different values of x are available. In this situation, 

g(ZI'Z2'Z3'Z41A)-~ 2 ( 2 r c ) 2 n 2 ( ~ 2 ~ ( 1 - p 2 ) ( 2 h 2 - 0  2 + p o 2 ) ( 2 h a - ~ 2 - p @ 2 )  i. 1 

1 ( ~ A~ ))/( ~ A~2) / g(zl'za'z3'z4lx)=(2rc)2n4(h4- 9^2^4'G ) \,,,=, j \ , , ;=l  

where 

A~ 1) =exp  I- 

A~ 2)= exp / 

A~ 3)= exp l- 

h 2 ( z 1 -  Oi)2 ...}- h 2 ( z 2 -  Dj) 2 - 2 p @ 2 ( Z l - D i ) ( z  2 - Oj) I 
2(t74 - ~284) J 

h2(z 3 _ Oi )2 + h2(z 4 _ Oj )2 _ 2~(~2 (z3 _ Oi )(24 _ Oj )1 
) 

+ C 2j 'c4j)+2b4(cli  "C4j 

A~ 4) = exp / 
+4;+<) 

2(1-  ~2)6~(2he - (} e + ~02)(2h2 - (}2 - ~(} 2) 

J 
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Fig. 1 Frequency distribution estimation of a 1000 one-sample sim- 
ulation using different methods. A: true distribution. B: semipara- 
metric method. C: sliding window. D: fixed bin. E: histogram (100 
bp interval). Note that in plots C, D and E the frequency of each in- 
terval is equal to its bar area 

the Yi values have to be grouped according to the different 
x values. I f  the true fragment lengths x~, x 2 . . . . .  x n are 
known for a sample of given observed lengths Yl, Y2 ..... yn, 
another way to estimate o 2 is 

8 2 = ln(1 + S 2) 

where S 2 is the empirical variance of the values yi/r~(xi) 
and rh is a non parametric regression estimator of Y given 
X. The correlation coefficient can be estimated using sim- 
ilar empirical methods as those presented above for o 2 . 

Discussion 

Frequency estimation 

To asses the practical behaviour of the proposed method, 
a one-sample simulation was performed. This theoretical 
model is a mixture of  normal densities which results in a 
similar shape to some of the distributions found in prac- 
tice (Fig. 1). Frequency estimation of this sample using 
the sliding window method (Gill et al. 1990) distorts the 
true frequency values. This distortion is more pronounced 
in the high molecular weight ranges, however, each fre- 
quency value is overestimated by at least two degrees of  
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magnitude. Something similar occurs when other bin- 
based frequency estimation methods, such as fixed bin 
(Budowle et al. 1991) are used. Thus, using these meth- 
ods, conservativeness is not uniform along the whole size 
range and match probabilities will be clearly underesti- 
mated, even more so in systems with peaks in high mole- 
cular weight areas. Indeed, the need to account for mea- 
surement error will always induce such an effect. To min- 
imize this kind of problem, the use of enzyme/probe com- 
binations with small sized alleles and more appropriate 
frequency estimation methods must be considered. 
Our approach to allelic frequency estimation is based on a 
more sophisticated "window method": the kernel estima- 
tion of density functions (Cao et al. 1994). The variance 
of the experimental measurement error is homogenised by 
applying a logarithmic transformation to the data (which 
is appropriate in this situation). Then the experimental 
error, in the logarithmic scale, may be assumed to be nor- 
mally distributed and independent of the true fragment 
length. In practice the variance of this error is estimated 
with a prel iminary sample,  in which the true fragment  
lengths are known. The kernel method is applied to the 
observed fragment lengths, and the semiparametric esti- 
mator is found as a deconvolution of it and the error dis- 
tribution (Valverde et al. 1993). The density functions ob- 
tained using this approach are very close to the real distri- 
butions, as can be seen in Fig. 1. 
The above mentioned approaches differ completely in 
the way they handle the increasing error variance. These 
methods discretize the distribution by counting the data 
falling into intervals of  increasing sizes (as the fragment 
length increases) around some predetermined fragment 
lengths. This leads to a loss of efficiency and poor estima- 
tion of frequencies, owing to the two transformations 
made on the variable. Firstly, as a result of the impossibil- 
ity of determining the true fragment size, a discrete vari- 
able is translated into a continuous variable and the con- 
tinuous distribution of fragment lengths is then forced into 
intervals to allow determination of the "bin frequencies". 
As explained, current technical limitations in the analyti- 
cal procedure prevent an exact determination of fragment 
lengths, and this makes the first transformation unavoid- 
able. However, the second transformation is not neces- 
sary, given that a continuous distribution Can be treated as 
such, without discretization, and this leads to a finer ad- 
justment to the real distribution. Our approach takes into 
account this consideration, and does not establish any ar- 
tificial allelic class. Instead, the match probability is con- 
sidered for each case independently. 

Match probability 

The density functions determined by this procedure are 
used to obtain the probability of a match between two 
bands. The calculations are carried out using a reformula- 
tion of the Bayes '  theorem, in terms of the conditional 
density functions. This formula takes into account the 
probability that the evidence given by the two bands oc- 
curs when the two fragments have the same origin as well 
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Table 1 Correlation coeffi- 
cients used for each probe in Probe /3 

our simulation experiments YNH24 0.1842 

MS43a 0.2120 
MS31 0.3656 

Table 2 Percentages of incor- 
rect match assignments using 2 
probes. Experimental error = 
0.92% 

Probe % Incorrect 
combination matches 

YNH24/MS43a 0.073 
YNH24/MS31 0.080 
MS43a/MS31 0.107 

Probe % Incorrect 
combination matches 

YNH24/MS43a 0.034 
YNH24/MS31 0.031 
MS43a/MS31 0.042 

Table 3 Percentages of incor- 
rect match assignments using 2 
probes. Experimental error = 
0.745% 

as when they are assumed to be independently observed. 
Both probabilities are computed by adding up the contri- 
bution that every item in the database (Zi or  Di)  gives to 
the total chance of observing the two fragments when ei- 
ther a match is assumed or not [see formulas (5), (10) and 
(12)]. However, it is necessary to point out that it is im- 
possible to obtain an unbiased nonparametric estimator of 
a density function, and because of this, the probability of  
a match can be overestimated in regions where the density 
is small, and underestimated in more dense intervals. 
Nevertheless, the bias is typically small, and it is balanced 
with the variance when the bandwidth parameter is cho- 
sen in a correct way (Hall et al. 1992) and the sample size 
is reasonably large. Furthermore, the bias is not only af- 
fected by the fragment size, but also takes into account the 
density estimated at each point. Because of this, it is ad- 
visable to extend the database size, to guarantee a high re- 
liability in the estimation of match probabilities. The ex- 
tension of the method to the two-band case requires inclu- 
sion in the calculations of the correlation coefficient be- 
tween the measurement errors of each pair of bands, 
which has been reported elsewhere (Evett et al. 1992). 
This coefficient has been calculated from a data set of 229 
individuals analysed in duplicate and was considered as a 
constant for each probe for the sake of simplicity. How- 
ever, other options, such as the use of a table of correla- 
tions (Evett et al. 1992) or a function modelling the be- 
haviour of the coefficient with respect to the average size 
of the bands and the distance between them can also be 
considered and included in the formulas. Table 1 shows 
the correlation coefficient used for each probe in our ex- 
periments. The practical performance of our method was 
assessed for the two band case using a data set of 229 in- 
dividuals analysed in duplicate in an experiment similar to 
that in Evett et al. (1992). Each of the 229 individuals was 
compared with its duplicate and, in turn, with the rest of sub- 
jects in the database. This gave a total of 229 within person 
comparisons and 26 106 between person comparisons. The 
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Fig. 2 (A) Distribution of likelihood ratio values from 229 within 
person comparisons using three probes (YNH24, MS43a and 
MS31). (B) distribution of likelihood ratio values from 26106 be- 
tween person comparisons using the same probes. Experimental 
error = 0.92% 
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Fig. 3 (A) Distribution of likelihood ratio values from 229 within 
person comparisons using three probes (YNH24, MS43a and 
MS31). (B) distribution of likelihood ratio values from 26106 be- 
tween person comparisons using the same probes. Experimental 
error = 0.745% 
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experimental  error was 0.92% (Valverde et al. 1993) using 
fragments of  the BRL 1 kb ladder measured against the lad- 
der we use in our routine practice (Nice Ladder  BRL). 
G i v e n  the h igh  qua l i ty  o f  the D N A  s a m p l e s  and the 
s imi la r  e lec t rophoret ic  condi t ions  used,  one -banded  pro-  
fi les were treated as having  two f ragments  of  the same 
length. For  the 229 wi thin  person compar i sons ,  we did not 
f ind any incorrect  non-matches  using one, two or three 
probes  (Fig.  2 a). Fo r  be tween  person compar i sons ,  Table  
2 shows percentages  o f  incorrect  match  ass ignments  using 
two probes .  W h e n  we used  three probes ,  no incorrect  
match  ass ignments  were  found (Fig. 2 b). This exper iment  
was repeated,  this t ime calcula t ing the exper imenta l  error  
f rom the al lel ic  controls  inc luded in each gel  ana lysed  in 
our  labora tory  (see Error  and corre la t ion est imation) .  The 
value  obta ined  was 0.745%. This change  in the exper i -  
menta l  error  has a r emarkab le  inf luence on the probabi l i ty  
values  (Fig. 3), howeve r  this effect  does  not  lead to any in- 
correct  ass ignment  o f  matches  or  non-matches .  

Conclusion 

Our method  offers some advantages  over  the current ly  
used  approaches .  Firstly,  it is theore t ica l ly  just i f ied,  and it 
has been  proved  to be wel l  adjus ted  to the rea l i ty  in a 
great  number  of  s i tuat ions (e.g. Scot t  et al. 1978; Titter- 
ington et al. 1981). Secondly,  it  does  not  need  any k ind  o f  
b inning to subdiv ide  f requency dis t r ibut ions.  The match  
probabi l i ty  is computed  independen t ly  for  each case,  and 
the calcula t ion is carr ied out with reference to the whole  
database.  There  is no subjec t ive  def ini t ion o f  a match ing  
threshold,  and match  probabi l i ty  var ies  according  to an 
approx ima te ly  normal  d is t r ibut ion depending  on the 
length di f ference be tween  the bands  considered.  Final ly ,  
this me thod  is easy  to imp lemen t  in personal  computers ,  it 
can be  used  with  many  k inds  o f  databases ,  it can be ad- 
jus ted  to the specif ic  condi t ions  of  each laboratory,  and it 
is capable  o f  subsequent  cor rec t ion  as the accuracy  in 
fragment length determination improves.  It could be argued 
that  our approach  is more  compl i ca t ed  than the current ly  
used methods .  However ,  it  can be eas i ly  exp la ined  to per-  
sonnel  wi thout  specif ic  ma themat i ca l  t raining,  and the fi- 
nal  stages of  the analysis  are very  s imi lar  to convent iona l  
methods .  It should be borne  in mind  that those methods  
are h ighly  conservat ive ,  mak ing  the es t imate  b iased  in 
favour of  the defendant. Some publications have defended 
the advantages of  conservative approaches for estimating 
frequencies in D N A  analysis (National Research Council  
1992; Monson and Budowle  1993). Extreme conservatism 
could be very dangerous,  specially when we have samples 
coming from two or more suspects, one of  whom could be 
innocent. In any case, for SLPs, conservatism must depend 
on the error of  each laboratory. Here we propose a method to 
estimate this error and therefore to select an adequate degree 
of conservatism for each individual  laboratory. Our aim is to 
achieve more realistic estimations of  match probabili t ies,  to 
take advantage of  the great discrimination power  of  these 
markers and our argument has shown that this method can 
assist the forensic scientist in reaching this objective. 
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